IN THIS ISSUE………

PRESIDENT’S MESSAGE 1
LATEST ON ICCE 2008 2
LETTERS TO THE EDITOR 2
FEATURE ARTICLES 4
 CHILDREN AND SELF ORGANISED LEARNING – LESSONS FROM A HOLE IN THE WALL
SHOWCASE ON ICCE2007 STUDENT BEST PAPER AND BEST PAPER AWARDS 7
APSCE MERIT SCHOLARSHIP PROGRAM 9
REGULARS
 FORTHCOMING ICT-RELATED CONFERENCES 10

PRESIDENT’S MESSAGE

Dear APSCE Members and student members,

Welcome to the August issue of the APSCE 2008 Newsletter!

With the rapid development of the Asia-Pacific region in almost all areas, the roles of APSCE in enhancing computer applications in education are expected to increase in steps. It is, thus, significant for all members to promote our society, APSCE, in this region and beyond.

I am pleased to briefly report the latest progress on ICCE2008. We have received 270 paper submissions for the main conference. The submission number increased from the previous conference thanks to the great effort and contributions of Tak-Wai Chan (Program Coordination Committee Chair) and many devoted Program, Organization and Implementation committee chairs. The five-day event will focus on the use of digital technology in Education and consists of five collocated theme-based conferences, workshops, doctoral student consortiums, tutorials, and interactive events. I am sure that ICCE2008 in Taipei will be successful.

The financial aid program that was initiated in ICCE2007 will continue this year to support up to six participating graduate students, each with the amount of US$500. However, it has been renamed to the APSCE Merit Scholarship Program to recognize students’ contributions to APSCE. For this reason, the selection criteria have been changed accordingly. To further recognize young researchers who have achieved and contributed significantly in technology-enhanced learning and with great potential to be future leaders in the Asia-Pacific region, I’m delighted to announce that the Society is launching a new award—Young Research Leader Award. The details of the award will be announced later, and hopefully the award can be presented in 2009.

As you may well notice that ICCE is experiencing and experimenting many innovative ideas, including the organization of the conference itself, different presentation types/formats, suitable dates for hosting the conference (ie, late November or early December). I hope that all great ideas will be discussed in the coming EXECO meeting in ICCE2008 and be actualized in the near future to bring the Society and the academia to a higher level.

Hope to see you all soon in Taipei!

With best wishes
Yoneo Yano

All society-related information can be found on APSCE’s official website at http://www.apsce.net/

LATEST ON ICCE2008

ICCE 2008
The 16th International Conference on Computers in Education ICCE 2008
27-31, October, 2008
Taipei, Taiwan
The 16th International Conference on Computers in Education, ICCE 2008, to be held in Taipei on October 27 through 31, 2008, will be a prospective and high quality international conference that provides a forum for exchange and interaction in employing the use of digital technology in education. For detail information please visit our official website http://www.apsce.net/icce2008/index.html.

The five days event consists of five collocated theme-based conferences, workshops, doctoral student consortiums, tutorials, and interactive events, advanced seminars, open forums, and many creative and original lectures.

The five collocated theme-based conferences are:

C1: ICCE Conference on AIED/ITS & Adaptive Learning
C2: ICCE Conference on CSCL & Learning Sciences
C3: ICCE Conference on Advanced Learning Technologies, Open Contents, & Standards
C4: ICCE Conference on CUMTEL & DIGITEL

ICCE2008 will have a special, condense, and exciting theme-based invited speech program.

Theme-based Invited Speakers:
CUMTEL: Special Theme: 1:1 LEARNING
Mike Sharples, University of Nottingham, UK
Sugata Mitra, Newcastle University, UK
Elliot Soloway, University of Michigan, USA
Castie Norris, University of North Texas, USA
OLPC researcher (David Cavallo, OLPC Project, Cambridge, USA)
Intel Classmate researcher (Rogerio de Paula, research scientist, Intel)

AIED/ITS/AL:
Sherry Chen, Brunel University West London, UK
Tanja Mitrovic, University of Canterbury, New Zealand

CSCL/LS:
Chin-Chung Tsai, National Taiwan University of Science and Technology, Taiwan
Another one to be announced.

LETTERS TO THE EDITOR

We received several e-mails from last year’s financial aid recipients who wrote in to share with us their experiences gained from ICCE 2007. We are pleased to highlight the e-mails from Jitti Niramitranon and Long Kai Wu in this issue.

Dear Editor,

I attended the ICCE2007 in Hiroshima, Japan and also presented the paper, *SceDer and COML: Toolsets for learning design and facilitation in one-to-one technology classroom*. This conference is regarded as one of the leading international conferences on technology and education, with an international programme committee and a particularly strong representation from Asian countries.

I had the opportunity to interact with leading international researchers not only in discussing about my research area but also the other topics relating to ongoing and future co-operative research opportunities for instance,

Tak-Wai Chan, National Central University of Taiwan

We discussed about the ICCE2008 which will be held in Taiwan. ICCE2008 will continue the theme of meta-conference. He had also mentioned about the research scholarship for Asian student for a PhD
study in Taiwan.

Chee-Kit Looi, National Institute of Education, Singapore
I shared the progress of work about learning design with SceDer and Group Scribbles. We also discussed about his work in implementing Group Scribbles to school children in Singapore. This was a great chance to know more about his work, using Group Scribbles in the schools because we will be also evaluating our project by using SceDer with Group Scribbles in the schools.

Ulrich Hoppe, University of Duisburg-Essen, Germany
We discussed the progress of work in a learning design on MoCoLADe, the learning design application based on EML. I also received valued feedbacks reflecting my current research from this session.

These are only the few examples which I can raise here in this limited space. However, apart from these formal discussions relating to the academic research, considering that I was the only participant from Great Britain’s research network, LSRI, University of Nottingham, I felt that I was in a virtual role of the so called “mini ambassador” to keep in touch and exchange the news between our groups and other groups across the world. Therefore, we had later set up a group mailing list, icce2007@googlegroups.com which initially had 15 young researchers from various countries that we discussed in the conference in order to keep in touch, exchange and circulate any news amongst us.

I am very delighted to say that I was able to join this successful event mainly because of the major funding from APSCE. I am very grateful for this kind support. Lastly, thank you for the warm welcome from the hosts and all parties who successfully organised the conference.

Yours Sincerely,

Jitti Niramitranon (PhD Student)
LSRI (Learning Sciences Research Institute)
School of Education
University of Nottingham
United Kingdom

Dear Editor,
“I hope that you will be the next generation of leaders in computers in education research.” When the five of us, doctoral recipients of financial aid from the APSCE, stood on stage during the ICCE 2007 closing ceremony, Prof. Fong-Lok Lee, the conference chair, blessed us with those most inspiring words, which meant much to us, young researchers, and motivated us to forge ahead.

The ICCE 2007 conference in Hiroshima was a milestone in my career, ushering in new perspectives on my research. The paper I presented in this conference was about the effectiveness of self-reflective prompts in facilitating learners’ learning-by-teaching activities. My session chair and international audience provided some critical but important comments and advice on my research. I also had several opportunities to have informal talks with my supervisor and other senior researchers, who inspired me to think about some new ideas for further research.

After the conference, I worked on a new modality of
prompts. Specifically, I began working on prompts from the viewpoint of the agent tutee in order to motivate a student tutor’s learning and teaching. It takes a different perspective from the scaffolding methods in traditional Intelligent Tutoring Systems. I have taken these ideas further and my papers have been accepted for presentation at the 8th International Conference of the Learning Sciences (ICLS 2008) and the 9th International Conference on Intelligent Tutoring System (ITS 2008).

My trip to Japan allowed me to visit places such as Tokyo University, the Nagoya City Center, and the Hiroshima Peace Park, and to appreciate the beauty of the land and friendship of the people. This memorable journey broadened my perspective significantly.

In sum, my participation in ICCE 2007, sponsored by the APSCE, was such an enriching experience, both personally and academically. I hope that the APSCE will continue to support doctoral students, who really need such opportunities.

Yours Sincerely,

Wu Longkai
National Institute of Education, Singapore

FEATURE ARTICLES

In this issue, we are indeed honoured to have Sugata Mitra as our guest columnist. Sugata Mitra is Professor of Educational Technology at The School of Education, Communication and Language Sciences at Newcastle University, UK.

Children and Self Organised Learning – Lessons from a hole in the wall

By Sugata Mitra
sugata.mitra@ncl.ac.uk

There is a generation of children, about 16 years old or younger, who have never known a world without the Internet. They are called ‘Digital Natives’ while the rest of us who have seen such a connected world develop could be called ‘Digital Immigrants’. I was recently at a conference in Oxford exploring how and whether the learning styles of digital natives have changed (http://www.oucs.ox.ac.uk/ltg/events/beyond2008/). This article is based on what I had discussed there and on a recent article for the Association of Commonwealth Universities.

It is a story of children and learning in a connected world, and of experiments spanning nearly a decade.

Remoteness

In 2006, with the help of Google Earth, a few colleagues and I worked out a route out of New Delhi, India, into the heart of rural north eastern India that avoided all the major metropolitan and urban areas...
as far as possible. Ritu Dangwal and Lehar Thadani then rented a car and drove down this route. Whenever they encountered a primary school in their journey, they stopped and administered a set of tests for English, Math and Science to the children and also conducted a brief interview of the teachers.

When they brought the data back, we totalled the marks for each school and plotted this against the distance of that school from Delhi.

Figure 1. Performance of schools in remote areas in northern India

The unmistakable and significant downward trend was traced to the attitude and quality of teachers in remote areas. There are, and always will be, places in the world where good teachers will not want to go. How will learners in such areas get equal opportunity? We published the results recently (http://www.ascilite.org.au/ajet/ajet24/mitra.html) and proposed some possible solutions to the problem.

Does the developed world have such problems with education in remote areas? Well, mostly not because the quality of life in most geographically remote areas of the developed world is sufficiently good to attract and sometimes strongly attract good teachers. Does this mean that the performance of schools in all areas of the developed world is uniform? The answer is clearly no. Here too there are areas where good teachers will not go. Such areas in the developed world are not necessarily remote in a geographic sense. But they are remote in other ways. There are areas in big cities that are socio-economically remote, areas that are religiously remote or ethnically remote. My colleague, Barrie Craven did a quick check on the performance of schools in the UK and plotted this against the density of subsidised council housing in those locations.

![Figure 2: School performance against Council housing in the UK](https://ascilite.org.au/ajet/ajet24/mitra.html)

Here too, in the heart of the developed world was the problem of inequality of educational opportunity.

The quality of education will be poorer in those areas where, for whatever reason, good teachers do not wish to go.

I could have called the above statement a hypothesis, but I don’t think I need to.

Such areas exist everywhere, they range from places that have been ravaged by war and natural disasters to inner city ghettos, slums, ethnic minority communities, remote and underdeveloped regions, forests, deserts, and mountains.........the list is long.

In general, we could divide the problem into two types:

Places where good teachers do not go.
Places where teachers don't exist at all. That is, teachers cannot get there even if they wanted to.

The two types of problems are likely to have different solutions, as outlined below.

Educational Technology

Is there really anything called educational technology for schools and universities? Well, what about LCD projectors and laptops and PowerPoint? Laptops were created for rich company executives, Microsoft wrote PowerPoint for corporate presentations, LCD projectors were invented for corporate boardrooms.

We, teachers, borrowed this technology at atrocious prices from the corporate world. The salespeople found a new market in education and sold to the
richest schools in the world. But then the richest schools in the biggest cities of the biggest economies already had good teachers and, mostly, good students. So they labelled the new found corporate technology as over-hyped and under-performing. There are numerous references to articles that say educational technology does not deliver. But then it was tried in the wrong place.

As a result of such misplaced technology, teachers often believe that educational technology is over-hyped, under-performing and overpriced. There are numerous references in the literature where teachers have reported no substantial gain from the use to technology in education.

What would happen if technology were to be developed for use in remote areas where good teachers do not exist? Would the underprivileged gain more from appropriate technology than their richer urban cousins?

I decided to develop, modify and take technology to some of the remotest locations I could find, to see if it would survive and, if it did survive, what it would do for education.

The hole in the wall

Between 1999 and now (2008), starting from the boundary wall of NIIT Limited in Delhi, where I used to work, to hundreds of villages and slums in India, Cambodia and Africa, we installed computers embedded into brick walls in public places.

These computers were designed for use by 6-15 year old children, free of charge and free of any supervision or teaching.

Photo 1: Children at a hole in the wall computer in Madangir, New Delhi, India

In the first five years of the experiment, we showed that groups of children can teach themselves to use a computer and the Internet, irrespective of who or where they are. Irrespective of what language they speak. Irrespective of whether they went to school or not. The results are published in what was to become the best open access paper of 2005 (http://www.ascilite.org.au/aijet/aijet21/mitra.html)

Nine years have passed since the first of the village children in India encountered their ‘hole in the wall’ computers. A recent documentary film reports on a girl in rural Maharashtra who has gone on to study Aeronautical Engineering and a boy who is studying Biotechnology. This, from their encounter with the computer in the wall.

In several schools we find evidence of an improvement in English, math and science scores. Armed with Google, what were our digital natives doing?

I decided to find out what else the children could learn on their own apart from learning to use computers. Amongst many experiments that we did, three stand out as examples of the new ways of learning that children are able and indeed eager to use.

In Hyderabad, groups of children showed significant improvements in English pronunciation on their own with only few hours of practice. They used a computer and a speech to text program that had been trained in a native English accent. The results are published (http://www.mitpressjournals.org/doi/pdf/10.1162/itid.2003.1.1.75?cookieSet=1) and show that speech to text engines can be used for self regulated improvements in pronunciation.

In the tsunami hit village of Kalikuppam in southern India, children with access to a hole in the wall computer taught themselves basic biotechnology on their own to reach a test score of 30% in just two months. They had started with a score of zero. If Tamil speaking children could teach themselves biotechnology in English, on their own, how far could we go?

In Gateshead, UK, ten year olds working in groups could answer GCSE questions that they would encounter six years later, in less than 20 minutes. I asked them if they could have done this in less time if they had not shared a computer in groups but had worked on their own laptops, alone. They said they could not have done it that way at all.

Presence

Distance education is often criticised as not being as good as “the real thing”. The real thing in this case being the presence of a teacher in a traditional classroom setting.

Distance educators and engineers have attempted to address the issue of remote presence of teachers through several methods. Starting with printed material that brings a teachers influence to remote...
learners, to synchronous video conferencing, more than a century of development of remote instruction have produced new methods of learning of varying effectiveness. It is beyond the scope of this article to describe the various successes and failures of these methods. However, in the author’s opinion, there is a consensus that, for traditional classroom education, there is no substitute for the “real thing”, that is, the presence of an effective teacher in a classroom. If this contention is accepted, one can, nevertheless, construct a thought experiment to test the effectiveness of the technology of remote presence.

A thought experiment on remote presence
We can imagine a technology where a teacher is projected into a classroom in the form of a life-sized, three dimensional image that is indistinguishable from a real person. The teacher is physically located in another location where she, in turn, is in front of a life-sized, three dimensional image of her class and learners. Both can hear each other in full spectrum audio, real time.

One can then argue that, since the audio-visual sensations of the teacher and learners are now indistinguishable from real, physical presence, the teaching-learning situations are identical. We will assume that in traditional classroom instruction, tactile and olfactory stimuli are not significant for learning effectiveness (this assumption, may, however, need to be questioned).

Under the above circumstances, we can conclude that the technology will produce learning outcomes that are identical to live classroom interaction. Indeed, such a setup would, arguably, obliterate any difference between virtual and live education.

In the author’s speculative opinion, such technology is twenty or more years in the future from now (2008). In the meanwhile, we can approximate such a situation in various ways.

I have experimented with wall sized projections of Skype screens and found them to be surprisingly effective. Free, peer-to-peer video conferencing could provide an easy and inexpensive way to bring teachers to places where they do not, or cannot, go.

Remotely Operated Vehicles (ROVs) that are guided over the Internet can provide the next generation of remote presence for teachers. The technology exists, mostly for purposes of defense – or as a means to kill people by remote control. We could use it for education instead.

I have a new hypothesis now: ‘Groups of children, given the appropriate digital infrastructure, a safe and free environment and minimal intervention can pass their school leaving examinations (that is, GCSE in the UK and CBSE in India) on their own’. Funded by the Education Fund of Orient Global, under the guidance of Professor James Tooley, this project is starting in Hyderabad, India. It will consist of Self Organising Learning Environments in remote schools where learners can progress on their own. Sometimes, teachers can step in over inexpensive P2P, Remote Presence technology. We will know the results in three years. We call this project The Antithesis.

SHOWCASE ON ICCE2007 STUDENT BEST PAPER AND BEST PAPER AWARDS
As highlighted in the earlier issue of the newsletter, there were two winners of the Best Paper Award and a winner for the Student Best Paper Award for last year’s conference. We are pleased to showcase the works of two groups of researchers from Singapore and Germany in this issue. We hope to feature the work of the group of researchers from USA in the next issue. —

Student Best Paper Award
The Use of Learning Strategies in Learning from Text and Pictures
Sabine Schlag, Mareike Florax & Rolf Ploetzner

My name is Sabine Schlag. I am a PhD student and I am working at the Institute of Media in Education at the University of Education in Freiburg, Germany. My PhD activities are embedded in the virtual PhD program “Knowledge acquisition and knowledge exchange with new media”. My research is engaged in the field of learning with text-picture-combinations. My aim is to improve learning with text and pictures by developing a learning strategy. This strategy should lead learners to better learning results when learning with explanatory texts combined with schematic pictures.

The research I presented at ICCE 2007 was my first work in this research field, which I have done for my diploma thesis. It is a great honor for me to win the Best Student Paper Award. The starting point for my research was the fact that although learning materials in multimedia learning environments are frequently made up of text and pictures, many students have difficulties in learning from such materials successfully. In order to support students’ learning, I conceptualized a deep level strategy and a surface level strategy for learning from text and
pictures. In an experimental study I investigated whether students who exercised the deep level strategy subsequently learned more successfully than those students who exercised the surface level strategy. No significant differences in learning success were found between students who previously exercised different strategies. In order to better understand why no differences were observable, I analyzed think aloud protocols taken from the students during learning. On the basis of this analysis I determined the strategies students actually applied during learning. In many cases students applied a different strategy than they had exercised.

As expected, students who actually made use of the deep level strategy had much more learning success than students who actually applied the surface level strategy. The study showed that the learning success differs depending on the learning strategy students uses. Although the practiced strategies were not adopted by the learners, the analysis of the process data gives information about how learners strategically process text and pictures. For me, it remains a challenge to develop a learning strategy which supports texts and pictures in such a way that learners routinely engage in deep processing. For further research, the presented study suggests various modifications, which could help to improve the teaching and exercising of learning strategies. Because of already available learning habits, it might be necessary to provide the opportunity to practice the strategies extensively, so that learners become skilled in the use of learning strategies. It seems to be important that learner’s prior knowledge is sufficient enough in order to effectively support the use of deep level strategies. Furthermore, the results also suggest that it could be fruitful to expand the strategies via components for self-motivation and self-regulation.

Best Paper Award

Handheld Computers as Cognitive Tools: An Environmental Learning Project in Singapore
Nicholas Tan, Wenli Chen, Chee-Kit Looi, Baohui Zhang, Peter Seow, Anwar Chan, Tze Min Chung & Teck Tiong Oh

The introduction about three leading authors:
Nicholas Tan is a Teaching Fellow in Learning Sciences and Technologies Academic Group, National Institute of Education, Singapore. His research interests include cognitive tools and mobile technology in learning.

Wenli Chen is an Assistant Professor in Learning Sciences Laboratory, National Institute of Education, Singapore. Her research interests include Computer-supported collaborative learning, virtual learning environment, and mobile Learning.

Chee Kit Looi is the Associate Professor and the Head of Learning Sciences Laboratory, National Institute of Education, Singapore. He was the principal investigator and key designer of several educational technology systems in his past stint in government-funded research institutes in Singapore.

About the paper

This design-based study uses handheld computers as cognitive tools to facilitate students’ inquiry-based learning on environmental issues - 3Rs (Reduce, Reuse and Recycle) in a Singapore primary school. By using handheld computers, 40 Primary 4 students investigated how wastes are produced and what impact 3Rs can have on protecting the environment in a field trip.

The proposed pedagogical approach is based on “experiential learning” where learning occurs through the process of experience, and knowledge is created “through a transformation of experience”. The approach adopted is what we called the Challenge Experiential approach.

Challenge: Present issues that are related to the topic taught and the challenge to the pupils with questions addressing the concepts to learn. Pupils are asked to record some of their prior knowledge through questions like what their predictions are or what they expect to see.

Experience: Pupils involve in activities, which took place at shopping centers, to learn the different 3R behaviors of Singaporeans.

Reflecting: Pupils reflect on their experience. They share about what happened and what is important
in their experience. This helps the pupils develop their logical reasoning, verbalize their thoughts and share their experience with others.

Planning: Pupils create plans to promote 3Rs ideas at home and their communities. This will demonstrate and refine student understanding.

Applying: Pupils are asked how they would apply what they have learned to similar or different situations. This will help the pupils to contextualize their learning.

In project 3Rs, the handheld computer, which incorporated features like the digital camera, wireless capabilities, internet browser, voice recorder and text input functions, enable students to take pictures, collect data like interviews, record information and upload them on the 3Rs online forum.

The purposes of using handheld computers in students' learning are to:
- Scaffold the students in learning about the 3Rs through the Challenge Experiential cycle;
- Collect information and data about items;
- View information about the collected data and compare the data of other groups;
- Learn about representation of data in graphical forms and numbers;
- Capture and archive the students' thoughts in learning about the 3Rs.

A software was designed to lead the students to carry out their learning tasks in the Challenge-Experiential Cycle. This software provides affordances for enhancing thinking skills through instant feedback, organizing thoughts, capturing the thought process, providing visual representations and modeling problem solving approaches to scaffold the student's problem solving skills. Each handheld computer has a database to store data collected by the students including the pictures taken on the reusable items in the supermarket. The software was able to generate a HTML file of the students' experiences, reflection and plans, and to transfer the file over a wireless network over the Internet.

Classroom observations, in-depth interview and pretest and post test of students understanding of the 3Rs were conducted to collect the data. The results indicate improvements in the students' understanding of 3Rs as compared to before the activity. With the handheld computers, students' learning activities are more organized as a result of the complex processes made simple with the use of handheld computers as cognitive tools. In this study, it is not only the technology affordances, but the way the technologies were used in the context of the learning environment and the associated pedagogy that enables the handheld computers to serve as cognitive tools. Learning occurs as a result of using technology as mediating tools over curriculum and pedagogy.

APSCE MERIT SCHOLARSHIP PROGRAM

To assist in fulfilling part of the goals of the Asia-Pacific Society for Computers in Education (APSCE)—fostering and sustaining a vibrant community of young researchers within the region, a financial aid and scholarship program has been set up since 2007 by the Society. The program intends to award potential young leaders among the student community, who have no adequate funding to attend ICCE2008. Important information on qualifications, documentation, selection criteria, notification and submission deadline are listed below.

Qualifications

1. First-authors or presenters of accepted papers of ICCE2008 (i.e., theme-based conference papers, workshop papers or DSC papers);
2. Applicants whose papers received overall favorable ratings from the reviewers (e.g., fall in the "inclined to accept" or "definitely accept" category);
3. Graduate students who are in need of financial support to attend ICCE2008.

Documentation

The following documents must be included in the application:

A cover page with your full name, contact information, a copy of the acceptance letter from the ICCE2008 theme-based conference PC chairs/co-chairs (including information on the overall...
ratings of the accepted paper), the name and contact information of your advisor/supervisor, and the SIG(s) you are involved in or will be involved in; A brief description highlighting your past contribution to the research community in general and/or the APSCE in particular. For those who have not had the opportunity to do so yet, please highlight how you can contribute to the community in the near future. Information on your prior experience participating in previous ICCEs in any forms (eg, authors, presenters, volunteers, reviewers) is welcomed.

A letter of recommendation from your advisor/supervisor endorsing your contribution to the community in the past and substantiating the current status of your financial situation. If you are not the first-author of the accepted paper, but will be the presenter of the accepted paper, your supervisor/advisor must clearly state this.

Selection Criteria

Only applicants who have met the aforementioned qualifications are eligible to apply. Priority will be given to those who have contributed as an individual to the research community in any form or have participated in prior ICCE(s). Applicants whose papers have been recommended by the paper review panel for Best Student Paper Award/Best Paper Award will have an added advantage. Special attention will be given to self-financed students of their postgraduate programs. In addition, priority will be given to students whose papers have been accepted for the theme-based conference, followed by workshop and lastly DSC papers. Those who have not received subsidised support through APSCE for attendance at past ICCE(s) will also be given priority.

Submission deadline

September 15, 2008

Number and Amount Awarded

A maximum of six recipients will be awarded the amount of USD 500 each to help students attend ICCE2008. The award will be given out via an open ceremony (eg, welcome party, open ceremony, closing ceremony). Awardees who are unable to attend the ceremony for which they were selected to receive this award must forfeit their award. Awardees are required to attend all possible sessions throughout the conference.

Notification

Successful applicants will be notified via e-mail of the outcome of their applications. Awardees will be required to submit a report (suggested length: 500 words) indicating how they benefited from the participation at ICCE2008 1 month after the conference. The report will be published in a reserved section of the APSCE Newsletter.

Submission and queries

Complete applications should be e-mailed to APSCE MERIT SCHOLARSHIP PROGRAM Chairs: Fu-Yun Yu and Su Luan Wong.

Fu-Yun Yu, Professor, National Cheng-Kung University, Taiwan (fuyun.ncku@gmail.com) and Su Luan Wong, Senior Lecturer, Universiti Putra Malaysia (wsuluan@gmail.com)

Any queries about this scholarship program can be directed to Fu-Yun Yu or Su Luan Wong.

FORTHCOMING ICT-RELATED CONFERENCES

IADIS WWW/Internet 2008 conference

Freiburg, Germany

The IADIS WWW/Internet 2008 conference aims to address the main issues of concern within WWW/Internet. WWW and Internet had a huge development in recent years. This conference aims to cover both technological as well as non-technological issues related to these developments. Main tracks have been identified (see below). However innovative contributes that don’t fit into these areas will also be considered since they might be of benefit to conference attendees.

E-Learn 2008

Las Vegas, Nevada.

Nov 17-21, 2008.

http://www.aace.org/conf/elearn/call.htm
The E-Learn Conference series originated as the WebNet World Conference on the WWW and Internet and was renamed to E-Learn since 2002. This annual conference serves as a multi-disciplinary forum for the exchange of information on research, development, and applications of all topics related to e-Learning in the Corporate, Government, Healthcare, and Higher Education sectors.

Important dates

* 8 September 2008 - Submission of papers (Final Call)
* 15 September 2008 - Notification of acceptance
* 24 September 2008 – Author confirmation

Dissemination of news and knowledge sharing has been one of the goals of APSCE’s newsletter. Personal news about community members (such as job changes, promotions, etc), research developments (e.g., new centers, books, software), recent academic activities and articles on the latest edtech buzzwords; successful classroom applications of theories, techniques, and tools…etc are more than welcome to be emailed directly to Su Luan Wong, wsuluan@gmail.com. For your piece to be included in the next issue, an electronic copy of the file must be emailed 10 days prior to the scheduled publication date of the next issue (November 10, 2008).

2009 IFIP-World Conference on Computers in Education (WCCE2009)
Brazil,
http://www.wcce2009.org/

The conference is open to everyone involved in education and training. Additionally players from technological, societal, business and political fields outside education are invited to make relevant contributions within the theme: Education and Technology for a Better World. We ask for contributions to a range of activities, not only traditional papers and panels. We invite you to contribute in new ways and modes; making use of Web2 tools and other 21st century cooperative and knowledge distribution tools.

Important dates

* 1st October 2008 - Deadline for forming of panels
* 31th December 2008 - Submission of papers and contributions
* 28th February 2009 - Notification of acceptance
* 15th March 2009 - Final confirmation to speakers
* 30th April 2009 - Submission of final version of paper for publishing
* 30th April 2009 - Submission of presentation material